I know the multiplication and division facts for all times tables up to 12×12.

The Year 5 children should already know ALL the times tables up to 12×12. The aim is for them to recall these facts instantly. This half term is a chance for Year 5 children to consolidate their knowledge of multiplication and division facts and to increase their speed of recall.

						Key Vocabulary
1	2	3	4	5	6	
$1 \times 1=1$	$2 \times 2=4$	$3 \times 3=9$	$4 \times 4=16$	$5 \times 5=25$	$6 \times 6=36$	What is 12 multiplied
$1 \times 2=2$	$2 \times 3=6$	$3 \times 4=12$	$4 \times 5=20$	$5 \times 6=30$	$6 \times 7=42$	What is 12 multiplied
$1 \times 3=3$	$2 \times 4=8$	$3 \times 5=15$	$4 \times 6=24$	$5 \times 7=35$	$6 \times 8=48$	by 6 ?
$1 \times 4=4$	$2 \times 5=10$	$3 \times 6=18$	$4 \times 7=28$	$5 \times 8=40$	$6 \times 9=54$	
$1 \times 5=5$	$2 \times 6=12$	$3 \times 7=21$	$4 \times 8=32$	$5 \times 9=45$	$6 \times 10=60$	What is 7 times 8 ?
$1 \times 6=6$	$2 \times 7=14$	$3 \times 8=24$	$4 \times 9=36$	$5 \times 10=50$	$6 \times 11=66$	
$1 \times 7=7$	$2 \times 8=16$	$3 \times 9=27$	$4 \times 10=40$	$5 \times 11=55$	$6 \times 12=72$	What is 84 divided by
$1 \times 8=8$	$2 \times 9=18$	$3 \times 10=30$	$4 \times 11=44$	$5 \times 12=60$		
$1 \times 9=9$	$2 \times 10=20$	$3 \times 11=33$	$4 \times 12=48$			
$1 \times 10=10$	$2 \times 11=22$	$3 \times 12=36$				What is the product of
$1 \times 11=11$	$2 \times 12=24$					3 and 4?
$1 \times 12=12$						9 lots of 6 is ...?
7	8	9	10	11	12	
$7 \times 7=49$	$8 \times 8=64$	$9 \times 9=81$	$10 \times 10=100$	$11 \times 11=121$	$12 \times 12=144$	
$7 \times 8=56$	$8 \times 9=72$	$9 \times 10=90$	$10 \times 11=110$	$11 \times 12=132$		
$7 \times 9=63$	$8 \times 10=80$	$9 \times 11=99$	$10 \times 12=120$			
$7 \times 10=70$	$8 \times 11=88$	$9 \times 12=108$				
$7 \times 11=77$	$8 \times 12=96$					
$7 \times 12=84$						

They should be able to answer these questions in any order, including missing number questions e.g. $7 \times \bigcirc=28$ or $\bigcirc \div 6=7$. Children who have already mastered their times tables should apply this knowledge to answer questions including decimals e.g. $0.7 \times \bigcirc=4.2$ or $\bigcirc \div 60=0.7$

Advice

The secret to success is practising little and often. Can you practise these Super Powers while walking to school or during a car journey? You don't need to practise them all at once. You don't need to practise them all at once: perhaps you could start with one particular times tables and ensure they know all of them before moving onto another times table.

Speed Challenge - Take two packs of playing cards and remove the kings. Turn over two cards and ask your child to multiply the numbers together (Ace =1, Jack = 11, Queen = 12). How many questions can they answer correctly in 2 minutes? Practise regularly and see if they can beat their high score.

Mathematical Super Powers
Year 6 －Autumn 2

I can multiply and divide numbers by 10,100 and 1000.

By the end of this half term，children should know the following facts．The aim is for them to recall these facts instantly．

When you multiply by 10，the number gets 10 times bigger．Each digit moves one place to the left．If needed，the space is filled with a 0 ，which is called a place holder．$\begin{gathered} 4 \times 10=40 \\ 7 \times 10=70 \\ 0.5 \times 10=5 \\ 0.72 \times 10=7.2 \end{gathered}$				When you multiply by 100 ，the number gets 100 times bigger． The digits move two places to the left．If needed，the spaces are filled with 0＇s，which are called place holders． $\begin{gathered} 3 \times 100=300 \\ 9 \times 100=900 \\ 2.5 \times 100=250 \\ 0.16 \times 100=16 \end{gathered}$	When you multiply by 1000，the number gets 1000 times bigger． The digits move three places to the left．If needed， the spaces are filled with 0 ＇s，which are called place holders． $\begin{gathered} 6 \times 1000=6000 \\ 90 \times 1000=90,000 \\ 6.8 \times 1000=6,800 \\ 0.89 \times 1000=890 \end{gathered}$
When you divide by 10 ，the number gets 10 times smaller． The digits move one place to the right． $\begin{gathered} 5 \div 10=0.5 \\ 24 \div 10=2.4 \\ 7.2 \div 10=0.72 \\ 0.96 \div 10=0.096 \end{gathered}$				When you divide by 100，the number gets 100 times smaller．The digits move two places to the right． $\begin{gathered} 2 \div 100=0.02 \\ 8 \div 100=0.08 \\ 99 \div 100=0.99 \\ 2.9 \div 100=0.029 \end{gathered}$	When you divide by 1000，the number gets 1000 times smaller．The digits move three places to the right． $\begin{gathered} 9 \div 1000=0.009 \\ 28 \div 1000=0.028 \\ 99 \div 1000=0.099 \\ 4.2 \div 1000=0.0042 \end{gathered}$
H	1 2	O $0{ }^{\text {th }}$			

	$\begin{aligned} & \text { 呂 } \\ & \text { 䯧 } \end{aligned}$			$\begin{aligned} & \text { n } \\ & \stackrel{y}{\omega} \\ & \stackrel{1}{\#} \\ & \stackrel{\circ}{F} \end{aligned}$		$\underset{\sim}{\text { ¢ }}$	$\stackrel{\check{\circ}}{\stackrel{y}{\circ}}$		$\begin{gathered} \frac{n}{1} \\ \stackrel{\rightharpoonup}{E} \end{gathered}$	告	

Children should be able to work these out in their heads．
They should also be able to say answers such as $5 \div 10=0.5$ as 5 tenths， $29 \div 100=0.29$ as 29 hundredths or 2 tenths and 9 hundredths and $9 \div 1000=0.009$ as 9 thousandths．

Mathematical Super Powers
Year 6 - Spring 1

I can identify common factors of a pair of numbers.

By the end of this half term, children should know the factors of numbers. The aim is for them to recall these facts fairly instantly.

The factors of a number are all numbers which divide it with no remainder.
E.g. the factors of 24 are $1,2,3,4,6,8$, 12 , and 24.

The factors of 56 are $1,2,4,7,8,14,28$ and 56.

The common factors of two numbers are the factors they share.
E.g. the common factors of 24 and 56 are 1, 2, 4 and 8.

The highest common factor of 24 and 56 is 8.

Children should be able to explain how they know that a number is a common factor. E.g. 8 is a common factor of 24 and 56 because $24=8 \times 3$ and $56=8 \times 7$.

Advice

The secret to success is practising little and often. Can you practise these Super Powers while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

Vary the way you practice through the use of key vocabulary and language as well as known facts.
The secret to success is practising little and often. Use time wisely. Can you practise these Super Powers while walking to school or during a car journey?

Play games - There are many online games to practise finding the greatest common factor, for example: www.fun4thebrain.com/beyondfacts/gcfsketch.html

Mathematical Super Powers
Year 6 - Spring 1

I can recall square numbers and cube numbers. I can identify prime numbers up to 50.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

A square number is a number multiplied by itself:

$$
1 \times 1=1
$$

This is also written as 1^{2} (one squared).
$4=2 \times 2$ or 2^{2}
$9=3 \times 3$ or 3^{2}
$16=4 \times 4$ or 4^{2}
$25=5 \times 5$ or 5^{2}
$36=6 \times 6$ or 6^{2}
$49=7 \times 7$ or 7^{2}
$64=8 \times 8$ or 8^{2}
$81=9 \times 9$ or 9^{2}
$100=10 \times 10$ or 10^{2}
$121=11 \times 11$ or 11^{2}
$144=12 \times 12$ or 12^{2}

A cube number is a number multiplied by itself and then itself again.
$1 \times 1 \times 1=1$
This is also written as 1^{3} (one cubed).
The first 10 cube numbers are:
$1=1 \times 1 \times 1$ or 1^{3}
$8=2 \times 2 \times 2$ or 2^{3}
$27=3 \times 3 \times 3$ or 3^{3}
$64=4 \times 4 \times 4$ or 4^{3}
$125=5 \times 5 \times 5$ or 5^{3}
$216=6 \times 6 \times 6$ or 6^{3}
$343=7 \times 7 \times 7$ or 7^{3}
$512=8 \times 8 \times 8$ or 8^{3}
$729=9 \times 9 \times 9$ or 9^{3}
$1,000=10 \times 10 \times 10$ or 10^{3}
The cube numbers from 1 to 100 are: 1, 8, 27, 64

As you can see when you cube a whole number, you'll find the numbers get very big very quickly!

A prime number is a number with no factors other than itself and one.

The following numbers are prime numbers:
2, 3, 5, 7, 11, 13, 17, 19 , 23, 29, 31, 37, 41, 43, 47

A composite number is divisible by a number other than 1 or itself.

The following numbers are composite numbers:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20,
22, 24, 25, 26, 27, 28, 30, 32, 34, 35,
36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50

Key vocabulary

Prime number Composite number Factor Multiple

Children should d be able to explain how they know that a number is composite. E.g. 39 is composite because it is a multiple of 3 and 13 .

Advice

The secret to success is practising little and often. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

It's really important that your child uses mathematical vocabulary accurately. Choose a number between 2 and 50. How many correct statements can your child make about this number using the vocabulary above? Make a set of cards for the numbers from 2 to 50 . How quickly can your child sort these into prime and composite numbers? How many even prime numbers can they find? How many odd composite numbers?

Mathematical Super Powers
Year 6 - Spring 2

I can convert between decimals, fractions and percentages.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

$$
\frac{1}{2}
$$

fraction	decimal	percentage $\%$	Key Vocabulary
$1 / 3$	0.33	33%	How many tenths is $0.8 ?$
$2 / 3$	0.66	66%	Write 0.75 as a fraction.
			Write $1 / 4$ as a decimal.

$\begin{aligned} & \frac{0}{10} \\ & 0 \% \end{aligned}$	$\begin{aligned} & \frac{1}{10} \\ & 10 \% \end{aligned}$	$\begin{aligned} & \frac{2}{10} \\ & 20 \% \end{aligned}$	$\begin{gathered} \frac{3}{10} \\ 30 \% \end{gathered}$	$\begin{gathered} \frac{4}{10} \\ 40 \% \end{gathered}$	$\begin{gathered} \frac{5}{10} \\ 50 \% \end{gathered}$	$\begin{gathered} \frac{6}{10} \\ 60 \% \end{gathered}$	$\begin{gathered} \frac{7}{10} \\ 70 \% \end{gathered}$	$\begin{gathered} \frac{8}{10} \\ 80 \% \end{gathered}$	$\begin{aligned} & \frac{9}{10} \\ & 90 \% \end{aligned}$	$\begin{array}{r} \frac{10}{10} \\ 100 \% \end{array}$
1	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
0		1		2		3		4		5
5		5		5		5		5		5
0\%		20\%		40\%		60\%		80\%		100\%
		0.20		0.40		0.60		0.80		

Advice

Play games - Make some cards with pairs of equivalent fractions and decimals. Use these to play the memory game or snap. Or make your own dominoes with fractions on one side and decimals on the other.

