Mathematical Super Powers
Year 4 - Autumn 1

I know number bonds to 100.
 Count in 25 s and 1000s.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

Numberbonds to 100		Count in 25s	Count in 1000s
Some examples: $\begin{aligned} & 60+40=100 \\ & 40+60=100 \\ & 100-40=60 \\ & 100-60=40\end{aligned}$		0	0
		25	1000
		50	2000
		75	3000
		100	4000
		125	5000
		150	6000
		175	7000
		200	8000
		225	9000
		250	10,000
		275	11,000
		300 etc	12,000 etc
Key Vocabulary		ocabulary	
What do I add to 65 to make 100?		many 25s ma	
What is 100 take away 6?		w many 25 s	? etc Multiply
What is 13 less than 100?		by 6.	
How many more than 98 is 100 ? What is the difference between 89 and 100?		are 4 lots of	
This list includes some example should know. They should be a including missing number ques $100-\bigcirc=72$	acts that children answer questions $\text { e.g. } 49+\bigcirc=100 \text { or }$	unting on in an your child s to fractions,	any multiple of nting in 25 s actions?

Advice

The secret to success is practising little and often. Can you practise these Super Powers while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day. Vary the way you practice through the use of key vocabulary and language as well as known facts: What do I add to 40 to make 100 ? What is 100 take away 30 ? What is 20 less than 90 ? How many more than 30 is 70 ? What is the difference between 10 and 50?
Buy one get three free: If your child knows one fact (e.g. $80+20=10$), can they tell you the other facts in the same family? $20+80=100100-20=80$ and 100-80=20
Use number bonds to 10 - How can number bonds to 10 help you work out number bonds to 100 ?
Play games - There are missing number questions at
http://www.conkermaths.org/cmweb.nsf/products/conkerkirfs.html
See how many questions you can answer in just 90 seconds. There is also a number bond pair game to play.
Roll a number - Use 2 dice to create a 2 digit number - which number do you add to this to make 100 ?

Mathematical Super Powers
Year 4 - Autumn 2

I can count in 6s.

I know the multiplication and division facts for the 6 times table. (up to 12×6)

By the end of this half term, children should know the factor pairs of numbers in the times tables. The aim is for them to recall these facts fairly instantly.

Count in $\mathbf{6 s}$	$0 \times \times 6=0$	$0 \div 6=0$
$\mathbf{0}$	$1 \times 6=6$	$6 \div 6=1$
$\mathbf{6}$	$2 \times 6=12$	$12 \div 6=2$
$\mathbf{1 2}$	$3 \times 6=18$	$18 \div 6=3$
$\mathbf{1 8}$	$4 \times 6=24$	$24 \div 6=4$
$\mathbf{2 4}$	$5 \times 6=30$	$30 \div 6=5$
$\mathbf{3 0}$	$6 \times 6=36$	$36 \div 6=6$
$\mathbf{4 2}$	$7 \times 6=42$	$42 \div 6=7$
$\mathbf{4 8}$	$8 \times 6=48$	$48 \div 6=8$
$\mathbf{5 4}$	$9 \times 6=54$	$54 \div 6=9$
$\mathbf{6 0}$	$10 \times 6=60$	$60 \div 6=10$
$\mathbf{7 2}$	$11 \times 6=66$	$66 \div 6=11$
	$12 \times 6=72$	$72 \div 6=12$

Key vocabulary

What is 4 times 6 ?
What is 8 multiplied by 6?
What is 24 divided by 6?
What is 48 shared between 6?
What is 72 divided into groups of 6 ?

They should be able to answer these questions in any order, including missing number questions, e.g. $6 \times \bigcirc=54$ or $\bigcirc \div 6=7$.

Advice

The secret to success is practising little and often. Can you practise these Super Powers while walking to school or during a car journey? You don't need to practise them all at once.

Buy one get three free - If your child knows one fact (e.g. $12 \times 6=72$), can they tell you the other three facts in the same fact family? If you know $7 \times 6=42$, then what will 70×6 be?

Times Table Rockstars - Children all have their username and password to practice in the "Garage" and the "Arena". They could try playing in the "Studio" and also do the Soundcheck.

Look for patterns - These times tables are full of patterns for your child to find. How many can they spot?
Use your three times table - Multiply a number by 3 and then double it. What do you notice? (e.g. $7 \times 3=21$, double it to get 7×6 which is 42).

I can count in 9s and 11s. I know the multiplication and division facts for the 9 and 11 times tables.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

Count in 9s	$0 \times 9=0$	$9 \div 9=1$	Count in 11s	$0 \times 11=0$	$11 \div 11=1$
$\mathbf{0}$	$1 \times 9=9$	$18 \div 9=2$	$\mathbf{0}$	$1 \times 11=11$	$22 \div 11=2$
$\mathbf{9}$	$2 \times 9=18$	$27 \div 9=3$	$\mathbf{1 1}$	$2 \times 11=22$	$33 \div 11=3$
$\mathbf{1 8}$	$3 \times 9=27$	$36 \div 9=4$	$\mathbf{2 2}$	$3 \times 11=33$	$44 \div 11=4$
$\mathbf{2 7}$	$4 \times 9=36$	$45 \div 9=5$	$\mathbf{3 3}$	$4 \times 11=44$	$55 \div 11=5$
$\mathbf{3 6}$	$5 \times 9=45$	$54 \div 9=6$	$\mathbf{4 4}$	$5 \times 11=55$	$66 \div 11=6$
$\mathbf{4 5}$	$6 \times 9=54$	$63 \div 9=7$	$\mathbf{5 5}$	$6 \times 11=66$	$77 \div 11=7$
$\mathbf{5 4}$	$7 \times 9=63$	$72 \div 9=8$	$\mathbf{6 6}$	$7 \times 11=77$	$88 \div 11=8$
$\mathbf{6 3}$	$8 \times 9=72$	$81 \div 9=9$	$\mathbf{7 7}$	$8 \times 11=88$	$99 \div 11=9$
$\mathbf{7 2}$	$9 \times 9=81$	$90 \div 9=10$	$\mathbf{8 8}$	$9 \times 11=99$	$110 \div 11=10$
$\mathbf{8 1}$	$10 \times 9=90$	$99 \div 9=11$	$\mathbf{9 9}$	$10 \times 11=110$	$121 \div 11=11$
$\mathbf{9 0}$	$11 \times 9=99$	$108 \div 9=12$	$\mathbf{1 1 0}$	$11 \times 11=121$	$132 \div 11=12$
$\mathbf{9 9}$	$12 \times 9=108$		$\mathbf{1 2 1}$	$12 \times 11=132$	
$\mathbf{1 0 8}$			$\mathbf{1 3 2}$		

Key vocabulary

What is 4 times 9 ? What is 8 multiplied by 11 ? What is 77 divided by 11 ? What is 45 shared between 9 ? What is 132 divided into groups of 11 ?
They should be able to answer these questions in any order, including missing number questions, e.g. $9 \times \bigcirc=108$ or $\bigcirc \div 11=7$.

Advice

The secret to success is practising little and often. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.
Buy one get three free - If your child knows one fact (e.g. $12 \times 9=108$), can they tell you the other three facts in the same fact family? If you know $7 \times 9=63$, then what will 70×9 be?
Times Table Rockstars - Children all have their username and password to practice in the "Garage" and the "Arena". They could try playing in the "Studio" and also do the Soundcheck.
Look for patterns - These times tables are full of patterns for your child to find. How many can they spot? Use your ten times table - Multiply a number by 10 and subtract the original number (e.g. $7 \times 10-7=70-7=63$).
What do you notice? What happens if you add your original number instead?
http://www.conkermaths.org/cmweb.nsf/products/conkerkirfs.html See how many questions you can answer in 90seconds. https://www.topmarks.co.uk/maths-games/daily10 and https://www.topmarks.co.uk/maths-games/hit-the-button

Mathematical Super Powers
Year 4 - Spring 2

I can count in 7 s and 12 s . I know the multiplication and division facts for the $\mathbf{7}$ and 12 times tables.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

Count in 7s	$0 \times 7=0$	$7 \div 7=1$	Count in 12s	$0 \times 12=0$	$12 \div 12=1$
0	$1 \times 7=7$	$14 \div 7=2$	0	$1 \times 12=12$	$24 \div 12=2$
7	$2 \times 7=14$	$21 \div 7=3$	12	$2 \times 12=24$	$36 \div 12=3$
14	$3 \times 7=21$	$28 \div 7=4$	24	$3 \times 12=36$	$48 \div 12=4$
21	$4 \times 7=28$	$35 \div 7=5$	36	$4 \times 12=48$	$60 \div 12=5$
28	$5 \times 7=35$	$42 \div 7=6$	48	$5 \times 12=60$	$72 \div 12=6$
35	$6 \times 7=42$	$49 \div 7=7$	60	$6 \times 12=72$	$84 \div 12=7$
42	$7 \times 7=49$	$56 \div 7=8$	84	$7 \times 12=84$	$96 \div 12=8$
56	$8 \times 7=56$	$63 \div 7=9$	96	$8 \times 12=96$	$108 \div 12=9$
63	$9 \times 7=63$	$70 \div 7=10$	108	$9 \times 12=108$	$120 \div 12=10$
70	$10 \times 7=70$	$77 \div 7=11$	120	$10 \times 12=120$	$132 \div 12=11$
77	$11 \times 7=77$	$84 \div 7=12$	132	$11 \times 12=132$	$144 \div 12=12$
84	$12 \times 7=84$		144	$12 \times 12=144$	

Key vocabulary
What is 4 times 7 ?
What is 63 shared between 7 ?

What is 8 multiplied by 12 ?
What is 72 divided by 6 ?
What is 132 divided into groups of 12 ?

Advice

The secret to success is practising little and often. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

Buy one get three free - If your child knows one fact (e.g. $12 \times 9=108$), can they tell you the other three facts in the same fact family? If you know $7 \times 9=63$, then what will 70×9 be?

Times Table Rockstars - Children all have their username and password to practice in the "Garage" and the "Arena". They could try playing in the "Studio" and also do the Soundcheck.

Look for patterns - These times tables are full of patterns for your child to find. How many can they spot?
Use your ten times table - Multiply a number by 10 and subtract the original number (e.g. $7 \times 10-7=70-7=63$). What do you notice? What happens if you add your original number instead?
http://www.conkermaths.org/cmweb.nsf/products/conkerkirfs.html See how many questions you can answer in 90seconds.
https://www.topmarks.co.uk/maths-games/daily10 and https://www.topmarks.co.uk/maths-games/hit-thebutton

Mathematical Super Powers
Year 4 - Summer 1

I can recognise decimal equivalents of the fractions $1 / 2,1 / 4,3 / 4$, tenths and hundredths.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

$1 / 2=0.5$	$1 / 10=0.1$	$1 / 100=0.01$	Key vocabulary
$1 / 4=0.25$	$2 / 10=0.2$	$7 / 100=0.07$	How many tenths is $0.8 ?$
$3 / 4=0.75$	$5 / 10=0.5$	$21 / 100=0.21$	How many hundredths is $0.12 ?$
	$5 / 10=0.6$	$75 / 100=0.75$	Write 0.75 as a fraction?
	$9 / 10=0.9$	$99 / 100=0.99$	Write $1 / 4$ as a decimal?

Children should be able to convert between decimals and fractions for $1 / 2,1 / 4,3 / 4$ and any number of tenths and hundredths.

Advice

The secret to success is practising little and often. Use time wisely. Can you practise these KIRFs while walking to school or during a car journey? You don't need to practise them all at once: perhaps you could have a fact of the day.

Play games - Make some cards with pairs of equivalent fractions and decimals. Use these to play the memory game or snap. Or make your own dominoes with fractions on one side and decimals on the other.
https://www.topmarks.co.uk/maths-games/daily10 - Level 4 - Fractions - decimal equivalents

Mathematical Super Powers

Year 4 - Summer 2

I can multiply and divide 1 and 2-digit numbers by 10 and 100.

By the end of this half term, children should know the following facts. The aim is for them to recall these facts instantly.

When you multiply by 10 , the number gets 10 times bigger. Each digit moves one place to the left. The space is filled with a 0 , which is called a place holder.
$4 \times 10=40$
$7 \times 10=70$
$53 \times 10=530$
$72 \times 10=720$

When you multiply by 100, the number gets 100 times bigger. The digits move two places to the left. The spaces are filled with 0 's, which are called place holders.
$3 \times 100=300$
$9 \times 100=900$
$25 \times 100=2500$
$16 \times 10=1600$

When you divide by 10 ,
the number gets 10 times smaller.
The digits move one place to the right.

$$
5 \div 10=0.5
$$

$$
9 \div 10=0.9
$$

$$
35 \div 10=3.5
$$

$$
72 \div 10=7.2
$$

When you divide by 100 , the number gets 100 times smaller. The digits move two places to the right.
$2 \div 100=0.02$
$8 \div 100=0.08$
$29 \div 100=0.29$
$99 \div 100=0.99$

10000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$
					\ddots	

Key vocabulary
Ten times bigger Ten times smaller Hundred times bigger Hundred times smaller Move the digits one place to the left Decimal point tenths hundredths

Children should be able to work these out in their heads.
They should also be able to say answers such as $5 \div 10=0.5$ as 5 tenths and $29 \div 100=0.29$ as 29 hundredths or 2 tenths and 9 hundredths.

